

Guia do Professor

Vídeo

Qual o melhor caminho?

Série Matemática na Escola

Objetivos

- 1. Introduzir a métrica do taxista através de um exemplo cotidiano;
- 2. Aplicar o conceito de permutação com repetição;
- 3. Mostrar algumas identidades combinatórias.

ATENÇÃO Este Guia do Professor serve apenas como apoio ao vídeo ao qual este documento se refere e não pretende esgotar o assunto do ponto de vista matemático ou pedagógico.

LICENÇA Esta obra está licenciada sob uma licença Creative Commons @@\$

Qual o melhor caminho?

Série

Matemática na Escola

Conteúdos

Combinatória; métrica do taxista; permutação com repetição.

Duração

Aprox. 10 minutos.

Objetivos

- 1. Introduzir a métrica do taxista através de um exemplo cotidiano;
- 2. Aplicar o conceito de permutação com repetição.

Sinopse Sinopse

O motoboy Romário necessita entregar uma encomenda em duas horas. Com a ajuda da sua amiga Grasi e através de conceitos combinatórios, aprende quais os melhores caminhos possíveis a serem feitos.

Material relacionado

Vídeos: Cooperativa do leite; Experimentos: Estradas para a estação, Onde fica a lixeira; Softwares: Geometria do Táxi -Contagem, Geometria do Táxi -Formas Geométricas

Introdução

Sobre a série

A série Matemática na Escola aborda o conteúdo de matemática do ensino médio através de situações, ficções e contextualizações. Os programas desta série usualmente são informativos e podem ser introdutórios de um assunto a ser estudado em sala de aula ou fechamentos de um tema ou problema desenvolvidos pelo professor. Os programas são ricos em representações gráficas para dar suporte ao conteúdo mais matemático e pequenos documentários trazem informações interdisciplinares.

Sobre o programa

O programa aborda assuntos combinatórios no contexto da métrica do taxista, também chamada de métrica l_1 ou métrica Manhattan. Usualmente, esse conceito de métrica não é apresentado aos alunos de ensino médio, entretanto ele surge naturalmente ao tratarmos de algumas aplicações práticas como a busca do caminho mínimo em uma cidade dividida por quarteirões, na qual é necessário substituir a métrica euclidiana usual pela do taxista.

A distância (do taxista) entre dois pontos p e q do plano cartesiano tais que $p = (p_1, p_2)$ e $q = (q_1, q_2)$ é definida por:

$$d(p,q) = |p_1 - q_1| + |p_2 - q_2|.$$

Esse conceito de distância possui um apelo geométrico bastante interessante. Por exemplo, a "circunferência" na métrica do taxi – ou seja, o conjunto de pontos que distam de um certo raio R de um outro ponto – é na realidade um losango, como pode ser visto na figura abaixo.

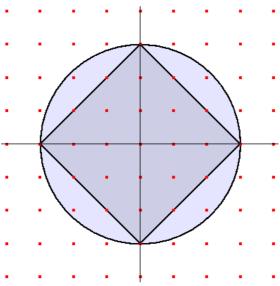


Figura 1: Conjunto de pontos com distância da origem menor do que ou igual a 3 nas métricas euclidiana (circunferência) e do taxista (losango).

Aplicada em pontos com coordenadas inteiras do plano cartesiano, a métrica do taxista possui um grande apelo combinatório, como mostrado no vídeo. O problema de qual o menor caminho entre um ponto e outro resume-se a calcular a distância entre os dois pontos e encontrar qualquer conjunto de ruas verticais e horizontais que realizam essa distância, conforme mostrado na Figura 2 abaixo.

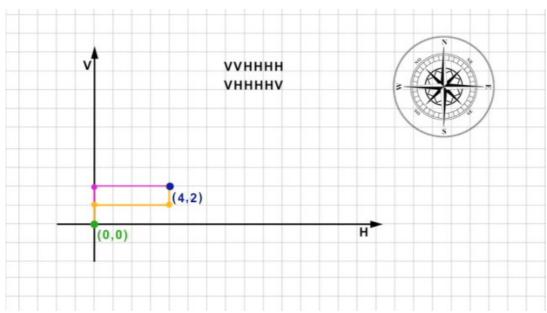


Figura 2: Dois possíveis caminhos entre os pontos (0,0) e (4,2).

Observe com os alunos que a versão atual do vídeo tem as coordenadas (4.2) trocadas.

No caso da Figura 2, a distância do taxista entre os pontos é 6 e pode ser realizada por vários caminhos, enquanto a distância euclidiana usual é $\sqrt{4^2 + 2^2} = \sqrt{20} \approx 4.47$ e é realizada pelo segmento de reta reto que passa pelos pontos (0,0) e (4,2). No contexto da aplicação prática mostrada no vídeo (uma cidade divida por quarteirões), não seria possível realizar a distância euclidiana.

A questão da quantidade de caminhos possíveis, por sua vez, é resolvida usando-se o argumento de que qualquer conjunto de duas ruas verticais (V) e quatro horizontais (H) no sentido do ponto (4,2) a partir do (0,0) realiza a distância mínima 6. Assim, o problema tornase um problema combinatório de como escolher, dentre 6 ruas, 4 horizontais e 2 verticais. De fato, dado um ponto qualquer $p = (p_1, p_2)$, com p_1 e p_2 positivos, o número de caminhos possíveis até a origem é:

$$C_{p_1+p_2}^{p_1}=C_{p_1+p_2}^{p_2}=\frac{(p_1+p_2)!}{p_1!\;p_2!},$$

pois a distância de p até a origem, neste caso, é $p_1 + p_2$.

Esse problema pode ser visto no contexto das permutações com repetição, que trata de conjuntos com vários elementos repetidos. Dado um conjunto com n elementos com n_1 elementos iguais do tipo 1, n_2 do tipo 2, e assim sucessivamente até n_k elementos do tipo k, a quantidade de permutações que podemos formar com estes elementos é dada por:

$$\frac{n!}{n_1!n_2!\dots n_k}$$

Considerando o problema do menor caminho até o ponto P, temos um conjunto de $p_1 + p_2$ ruas, onde p_1 são horizontais e p_2 verticais, ou seja, temos uma permutação com repetição. De fato, qualquer combinação

de n elementos agrupados k a k pode ser escrita como uma permutação com k elementos repetidos de um tipo e n-k de outro.

Além deste problema, existem vários outros problemas combinatórios e geométricos associados à métrica do taxi, desenvolvidos, por exemplo, nos softwares "Geometria do Táxi - Contagem" e "Geometria do Táxi - Formas Geométricas"

Sugestões de atividades

Antes da execução

Antes do programa pode-se colocar, por exemplo, o problema de qual a menor distância entre dois pontos no plano (do ponto de vista euclidiano) e de como realizar esta distância. Em seguida, pode-se propor o problema de qual a menor distância entre esses dois pontos considerando que eles estão na esquina de quarteirões, com o auxílio de desenhos na lousa. Os alunos serão estimulados a pensar de maneira natural na distância do taxista.

Depois da execução

Os problemas abaixo são apresentados com o propósito de fixar e aprofundar o assunto abordado no programa.

Problema 1: Suponhamos que um construtor necessita subir um andaime no qual, de cada canto, possui três possibilidades: ir à direita, ir à frente ou subir ao andar de cima, isto é, o construtor pode moverse nas três direções do espaço. Se considerarmos o seu ponto inicial como o (0,0,0) e o ponto de chegada como o (2,4,3), de quantas maneiras o construtor poderá ir ao ponto de chegada de modo a fazer o menor número de deslocamentos possíveis?

Solução: Esse problema é análogo à questão proposta no vídeo e pode ser resolvido utilizando a teoria de permutações com repetição. Para que o construtor cumpra o caminho mínimo, é necessário dar 2 passos

à direita, 4 à esquerda e 3 para cima, em qualquer ordem. Assim, temos uma permutação de 9 elementos com 2 passos à direita, 4 à esquerda e 3 idas acima, ou seja, a quantidade de caminhos é:

$$\frac{9!}{2!3!4!} = \frac{9.8.7.6.5}{2.3!} = 9.4.7.5 = 1260.$$

Problema 2: Qual o número de pontos inteiros que estão a uma certa distância do taxista n da origem? Por exemplo, para n=2, há 8 pontos que distam 2 da origem, são eles: $(\pm 1, \pm 1), (\pm 2, 0), (0, \pm 2)$.

Solução: É recomendável que este exercício seja feito em duas etapas, primeiramente tentando inferir o resultado através de exemplos numéricos. Consideramos a primeira pergunta temos:

Para n=1, há 4 pontos. Para n=2, há 8 pontos e para n=3 há 12 pontos, donde é razoável inferir que o número de pontos que distam exatamente n da origem é 4n, para $n \ge 1$.

Isso pode ser demonstrado da seguinte maneira:

Resolvemos primeiro para o primeiro quadrante. Queremos o número de soluções para x + y = n com $x \in y$ não-negativos. Em outras palavras, queremos encontrar os pontos de coordenadas inteiras no segmento de reta que vai de (n,0) até (0,n) como pode ser visto na Figura 1. É fácil ver que há n+1 pontos neste segmento (0,n),(1,n-1),(2,n-2),...(n,0). No segundo quadrante, também temos pontos, entretanto o ponto (0, n) já foi considerado anteriormente, e portanto devemos levar em conta apenas n pontos. Para o terceiro quadrante, o raciocínio é análogo, e a quantidade de pontos no segmento é n. No quarto quadrante, entretanto, há dois pontos que já foram contados: (n,0) e (0,-n) e portanto devemos considerar apenas pontos. No total temos (n + 1) + n + n + (n - 1) = 4n pontos.

Sugestões de leitura

Carvalho, Paulo Cezar Pinto. MÉTODOS DE CONTAGEM E PROBABILIDADE.

obmep, 2005.

Lima, Elon Lages; Carvalho, Paulo Cezar Pinto; Wagner, Eduardo; Morgado, Augusto César. **A MATEMÁTICA DO ENSINO MÉDIO**, Vol 3, Coleção do Professor de Matemática, (3ª Edição). Rio de Janeiro: sbm, 2000.

Krause, Eugene F. TAXICAB GEOMETRY. New York: Dover, 1986. Veloso, Eduardo. GEOMETRIA: TEMAS ACTUAIS. Materiais para professores. Lisboa: Instituto de Inovação Educacional, 2000.

Ficha técnica

Autor Antônio Campello Revisão José Plínio de Oliveira dos Santos Coordenação de Mídias Audiovisuais Prof. Dr. Eduardo Paiva Coordenador acadêmico Prof. Dr. Samuel Rocha de Oliveira

Universidade Estadual de Campinas

Reitor Fernando Ferreira Costa Vice-reitor Edgar Salvadori de Decca Pró-Reitor de Pós-Graduação Euclides de Mesquita Neto

Instituto de Matemática, Estatística e Computação Científica Diretor Caio José Colletti Negreiros Vice-diretor Verónica Andrea González-López

