

Experimento

Quanto você tem de pele?

Objetivos da unidade

- 1. Calcular área da superfície de sólidos geométricos;
- 2. Obter aproximações para a superfície da pele de um ser humano.

LICENÇA Esta obrá está licenciada sob uma licença Creative Commons (cc) (b) (s)

Quanto você tem de pele?

GUIA DO PROFESSOR

Sinopse

Neste experimento faremos aproximações para descobrir quantos metros quadrados um ser humano tem de pele. Para isso, os alunos escolherão sólidos geométricos que se assemelham às partes do corpo e então, depois de calcular a área da superfície destas figuras, obterão um valor estimado para a área da pele.

Conteúdos

- Geometria Plana, Áreas;
- Geometria Espacial, Sólidos geométricos, Áreas de superfícies.

Objetivos

- 1. Calcular área da superfície de sólidos geométricos;
- 2. Obter aproximações para a superfície da pele de um ser humano.

Duração

Uma aula dupla.

Introdução

A pele é o maior órgão do corpo humano. Ela acumula várias funções como proteção, regulação da temperatura e armazenamento de energia. Além disso, a pele é responsável por grande parte das informações que recebemos do ambiente ao nosso redor, isto é, as sensações de calor, pressão e tato, sem as quais nossa vida seria muito complicada. Já imaginou as consequências de não sentir o calor do fogo?

Mas qual será o tamanho deste órgão que tem tantas funções importantes? Este será o desafio do experimento: calcular a área da superfície da pele humana.

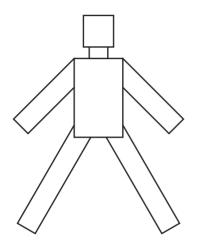
Na ETAPA 1, iniciaremos discussões para encontrar sólidos geométricos que possam representar cada parte do corpo. Em seguida, calcularemos a área da superfície de cada um deles obtendo, assim, uma aproximação para o tamanho da pele.

Por fim, faremos uma comparação dessa medida com o valor obtido através de uma fórmula utilizada em medicina.

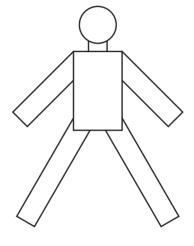
O experimento

Etapa 1 Sólidos que formam o corpo

Nesta etapa, os grupos escolhem os sólidos para representar as partes do corpo. Além do exemplo do Experimento, seguem dois outros modelos possíveis:



Partes do corpo	Forma geométrica semelhante
Cabeça	Cilindro
Pescoço	Cilindro
Braços + mãos	Cilindro
Pernas + pés	Cilindro
Tronco	Cilindro



Partes do corpo	Forma geométrica semelhante
Cabeça	Esfera
Pescoço	Cilindro
Braços + mãos	Cilindro
Pernas + pés	Cilindro
Tronco	Cilindro

TABELA 2

Etapa 2 Área de pele

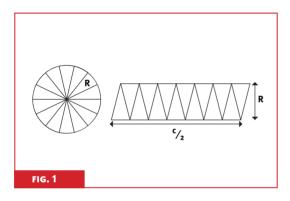
Os alunos devem conhecer a maioria das fórmulas para o cálculo da área da superfície de sólidos, porém, este experimento não oferece diretamente os valores que serão substituídos na fórmula; os grupos devem fazer medições, nem sempre diretas, para obter as grandezas necessárias.

Seguem as deduções das fórmulas para o cálculo da área dos sólidos apresentados nos exemplos.

Círculo

A área do círculo de raio R é dada por $A=\pi R^2$.

A figura que segue mostra como chegar experimentalmente a essa expressão. Para isso, temos de decompor o círculo em um número par de setores, os quais devem ser rearranjados na forma apresentada.

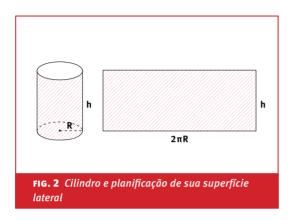


Observamos que a figura da direita é aproximadamente um paralelogramo cuja base é a metade do comprimento ${\cal C}$ da circunferência e a altura é igual ao seu raio. Logo, a área do círculo é o produto da metade do comprimento da circunferência pelo raio.

$$A = \frac{C}{2} \cdot R = \frac{2 \cdot \pi \cdot R}{2} R = \pi \cdot R^2$$

Cilindro

A figura mostra a representação de um cilindro circular reto de raio R e

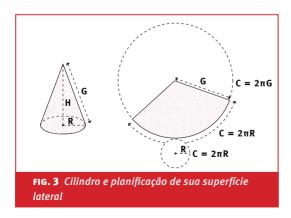


Seccionando a superfície do cilindro por um segmento perpendicular à base, podemos desenrolar essa superfície, obtendo um retângulo de lados $2\pi R$ e h.

Assim, a área da superfície lateral de um cilindro reto de altura h e raio R é igual à área do retângulo. Ou seja, $A=2\pi Rh$.

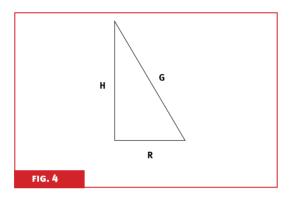
Cone

Considere um cone circular reto com raio da base raio R e altura H.



A superfície do cone é composta por uma superfície lateral e pelo círculo da base. Sua superfície lateral é formada pela reunião de todos os segmentos de reta ligando o vértice do cone à circunferência da base. Por sua vez. o vértice do cone reto está na reta perpendicular à base, que contém seu centro. Esta reta é o eixo do cone.

Para o cone reto, todos os segmentos que formam sua superfície lateral têm a mesma medida. Esse segmento comum é a geratriz do cone, denotada por G, e sua medida satisfaz a relação $G = \sqrt{R^2 + H^2}$.



Cortando o cone ao longo de um desses segmentos e em seguida planificando essa superfície, obtemos um setor circular com raio G e comprimento de arco igual ao comprimento da circunferência da base. Assim, a área da superfície lateral do cone é igual à área desse setor circular, como mostrado na FIGURA 3.

Usando o fato de que a área de um setor circular é diretamente proporcional ao comprimento de seu arco, obtemos que: a área A da superfície lateral do cone está para a área do círculo de raio G, assim como o comprimento $2 \cdot \pi \cdot R$ de seu arco está para o comprimento $2 \cdot \pi \cdot G$ da circunferência toda.

Ou seia.

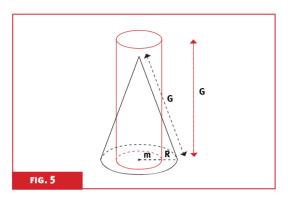
$$\frac{A}{\pi \cdot G^2} = \frac{2 \cdot \pi \cdot R}{2 \cdot \pi \cdot G} = \frac{R}{G}.$$

De onde obtemos: $A = \pi \cdot R \cdot G$.

Mas.

$$\pi \cdot R \cdot G = 2 \cdot \pi \cdot \frac{R}{2} \cdot G$$
,

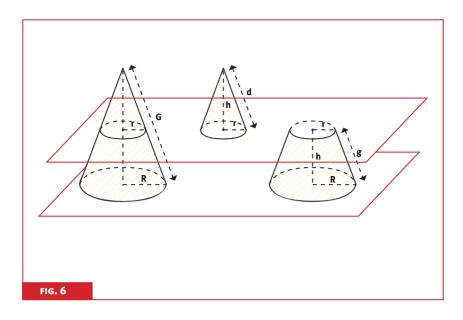
ou seja, a área da superfície lateral de um cone pode ser vista como a área da superfície do cilindro cujo rajo é a metade do rajo do cone e cuja altura é igual à geratriz do cone. Logo, $A=2\cdot\pi\cdot m\cdot G$.



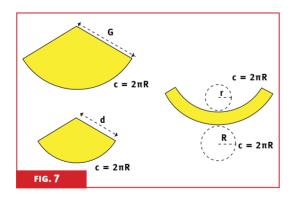
Tronco de cone

Vamos considerar o tronco de cone reto como sendo a parte do cone compreendida entre o plano que contém a base do cone e outro plano paralelo a esse, que secciona o cone.

A base do tronco é o círculo de raio R e o topo é um círculo de raio r. Sua altura é o segmento perpendicular à base entre os dois planos. A geratriz g do tronco é o segmento da geratriz G do cone, compreendido entre o topo e a base.



Então, a área A_t da superfície de um tronco de cone pode ser calculada como a diferença entre a área da superfície do cone inicial e a área da superfície do cone que restou após ser retirado o tronco. Veja na figura abaixo:



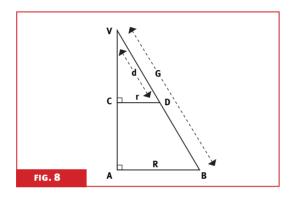
Assim,

$$A_t = \pi \cdot R \cdot G - \pi \cdot r \cdot d$$

$$= \pi \cdot R \cdot (g+d) - \pi \cdot r \cdot d$$

$$= \pi \cdot [(R+r) \cdot d - r \cdot d]$$

$$= \pi \cdot R \cdot g + \pi \cdot (R-r) \cdot d$$



Da semelhança dos triângulos retângulos $V\!AB$ e $V\!CD$, obtemos a relação:

$$\frac{G}{R} = \frac{d}{r}.$$

Logo,

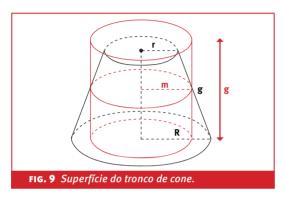
$$d = \frac{rg}{R - r}.$$

E daı́, $A_t = \pi (R+r)g$.

Assim, como no caso do cone, podemos observar que essa área é igual ao produto da geratriz g pelo comprimento da circunferência média do tronco, que é aquela cujo raio é

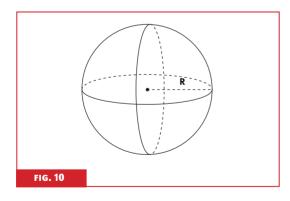
$$m = \frac{R+r}{2},$$

ou seja, $A_t = 2 \cdot \pi \cdot m \cdot g$.



Esfera

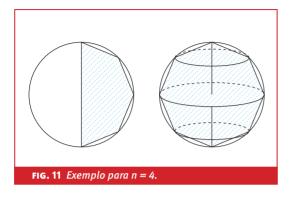
A área da superfície da esfera de raio R é igual a $4 \cdot \pi \cdot R^2$.



Uma ideia para se chegar a essa fórmula é considerar a superfície da esfera como o resultado da rotação de uma semi-circunferência em torno

de seu eixo. Nessa semicircunferência deve ser inscrita a metade de um polígono de 2n lados.

Pela rotação da figura obtemos uma superfície formada por n-2troncos de cone e dois cones, um no topo e outro na base.



Área da superfície lateral do tronco de cone

$$A = \pi (R + r)g$$

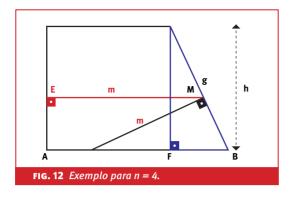
Portanto, a área A_p dessa superfície é igual à soma das áreas das superfícies laterais dos n-2 troncos de cone e dos dois cones, cuja soma das alturas é o dobro do raio da esfera.

Como já visto, o tronco de cone de raio maior R, raio menor r e geratriz q tem área de superfície lateral igual à área da superfície lateral do cilindro de raio

$$m = \frac{R+r}{2}$$

e altura h=g. Observe a FIGURA 8.

Sua área lateral pode, então, ser escrita como $A=2\pi mq$.



A FIGURA 12 representa o corte do tronco de cone por um plano que contém os raios das bases. Da semelhança dos triângulos retângulos AMB e AEM, sendo a o apótema do polígono regular inscrito, obtemos a relação:

$$\frac{m}{a} = \frac{h}{g}.$$

Daí, mq = ah.

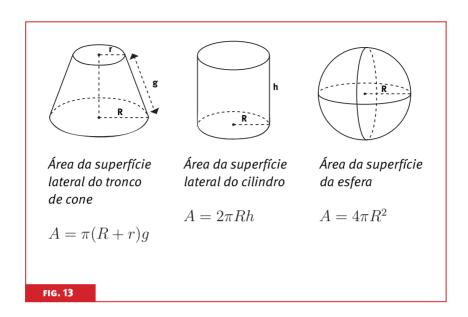
Portanto, a área do tronco pode ser escrita como $A=2\cdot\pi\cdot a\cdot h$.

Essa relação é válida também para os dois cones.

Com isso, a área A_p pode ser escrita como

$$A_p = 2 \cdot \pi \cdot a \cdot 2 \cdot R = 4 \cdot \pi \cdot a \cdot R.$$

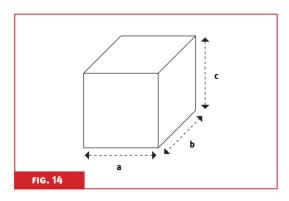
Quando o número n cresce indefinidamente, o apótema a se aproxima do raio R e a área calculada tende para a área da superfície esférica. Portanto, $A=4\pi R^2$.



O comprimento de uma circunferência de raio r é $2\pi r$. A área de um círculo de raio r é πr^2 .

Paralelepípedo

A área da superfície de um paralelepípedo de arestas a,b e c é igual a 2ab + 2bc + 2ac, já que suas faces são retangulares. Figue atento quando algum grupo escolher este sólido já que, provavelmente, alguma de suas faces não deverá ser considerada no cálculo.



Fechamento

A etapa final do experimento sugere a comparação dos resultados obtidos pelas duas maneiras diferentes de se fazer uma estimativa da área da superfície da pele de uma pessoa.

O aluno dever perceber que usando caminhos diferentes pode-se chegar a resultados próximos e é fundamental evidenciar a importância do uso dos conteúdos matemáticos para encontrar a solução do problema.

Variação

As medidas obtidas pelos alunos ao longo do experimento podem ser usadas para calcular uma aproximação do volume do corpo escolhido.

Esse valor pode ser usado para estimar a densidade do corpo (espera-se um resultado próximo de $1 \frac{kg}{l}$).

Bibliografia

LAM TK, LEUNG DT: More on Simplified Calculation of Body-Surface Area -N. Engl. J. Med. 1988, April 28;318(17):1130.

LIMA, E. L. et al. A Matemática do Ensino Médio. Rio de Janeiro: SBM, 2006. vol. 2. (Coleção do Professor de Matemática).

LIMA, E. L. et al. Medida e Forma em Geometria. Rio de Janeiro: SBM, 1991. (Coleção do Professor de Matemática).

REZENDE, E. Q. F. e QUEIROZ, M. L. B., Geometria Euclidiana Plana e Construções Geométricas. Campinas, Editora da Unicamp, 2008.

Ficha técnica

MATEMÁTICA MULTIMÍDIA

Samuel Rocha de Oliveira

INSTITUTO DE MATEMÁTICA,

ESTATÍSTICA E COMPUTAÇÃO

CIENTÍFICA (IMECC - UNICAMP)

Coordenador de Experimentos

Coordenador Geral

Leonardo Barichello

Diretor

AUTORA

Maria Lúcia Bontorin de Queiroz e Otilia Terezinha W. Paques

REVISORES Matemática Antônio Carlos do Patrocínio Língua Portuguesa Carolina Bonturi

PROIETO GRÁFICO

Preface Design

ILUSTRAÇÕES TÉCNICAS

Lucas Ogasawara de Oliveira e Preface Design

UNIVERSIDADE ESTADUAL DE CAMPINAS Reitor

José Tadeu Jorge **Vice-Reitor**

Fernando Ferreira da Costa

GRUPO GESTOR DE PROJETOS EDUCACIONAIS (GGPE - UNICAMP) Coordenador Fernando Arantes **Gerente Executiva**

Miriam C. C. de Oliveira

Javme Vaz Jr. **Vice-Diretor**

Edmundo Capelas de Oliveira

LICENÇA Esta obrá está licenciada sob uma licença Creative Commons (cc) (b) (s)

