Um jovem náufrago recorre a conceitos geométricos simples para determinar sua latitude e longitude e assim mandar o sinal de socorro.

Conteúdos

  • esfera
  • Trigonometria
  • paralelismo
  • ângulo entre retas no plano.

Objetivos

  1. Revisar o conceito de ângulos e suas subdivisões;
  2. Revisar o conceito de retas paralelas e ângulos alternos e internos;
  3. Trabalhar com a trigonometria no triângulo retângulo;
  4. Iniciar o conceito das inversas das funções trigonométricas.

O jovem Pedro, aspirante a músico, procura pelo compositor Iannis Xenakis. Durante esta busca, irá conhecer alguns conceitos de Teoria dos Números e suas aplicações.

Conteúdos

  • Teoria dos Números
  • Crivo de Eratóstenes
  • Teorema da Infinitude dos Primos

Objetivos

  1. Apresentar a demonstração do teorema da infinitude dos números primos
  2. Introduzir o Crivo de Eratóstenes

Um jovem pretende fazer uma quadra poliesportiva, ou seja, uma quadra onde se pode jogar futsal, voleibol, basquetebol ou handebol. Ele está com dúvidas e chama um amigo, que é professor de educação fisica. O amigo o ensina a fazer uma maquete da quadra usando a razão de semelhança entre as medidas da maquete e do terreno. Pesquisando os tamanhos das quadras ele faz a maquete.

Conteúdos

  • proporcionalidade
  • função modular
  • figuras geometricas
  • gráficos de funções escada

Objetivos

  1. Usar a semelhança de figuras e conceitos de geometria plana para construir uma maquete de uma quadra poliesportiva.

Dois Trainees têm a missão de mostrar ao chefe que a rebertura de uma usina hidroelétrica é sustentável. Para isso, eles criam um modelo matemático que envolve operações entre matrizes e vetores

Conteúdos

  • Matrizes
  • Sistemas de equações lineares
  • multiplicação de matriz por vetor

Objetivos

  1. Dar um exemplo de modelagem matemática
  2. Iniciar o conceito de Cadeias de Markov
  3. Aprofundar o conceito de matrizes e sistemas lineares

Paulo é tentado a participar de um jogo de azar no qual aparentemente ele pode ganhar uma fortuna. Porém, ele logo é chamado à razão.

Conteúdos

  • Paradoxo de São Petersburgo
  • cálculo de esperança
  • valor esperado
  • média

Objetivos

  1. Apresentar o famoso “Paradoxo de São Petersburgo”;
  2. Definir esperança matemática;
  3. Introduzir a teoria da escolha envolvendo o risco.

A fim de conseguir recursos suficientes para a contratação de mais costureiras, Deco, após conversar com um contador, explica para a Dona Gera como foi calculado o preço do ingresso de uma festa na comunidade. Usando uma função quadrática, eles encontram o valor de ingresso que deve maximizar o lucro.

Conteúdos

  • Função Quadrática

Objetivos

  1. Apresentar uma aplicação de funções quadráticas;
  2. Analisar pontos de máximo de uma parábola;
  3. Avaliar o comportamento da parábola com variações em um coeficiente da função quadrática correspondente.

Duas professoras pretendem organizar rodas juninas para integrar os alunos e querem saber quantas rodas conseguirão formar com os meninos e meninas da escola.

Conteúdos

  • fatorial
  • arranjo
  • Permutação cíclica

Objetivos

  1. Introduzir conceitos de análise combinatória;
  2. Apresentar as permutações cíclicas;
  3. Aplicar o conceito de arranjos à solução de problemas com permutação cíclica.

Autor de novelas troca, por um dia, de profissão com seu irmão gêmeo, um engenheiro de tráfego. Enquanto desempenham as atividades um do outro, descobrem que seus trabalhos têm muito em comum.

Conteúdos

  • grafos

Objetivos

  1. Apresentar o que são grafos e algumas de suas aplicações

Diretor de teatro, curioso da cultura grega, decide montar uma peça baseada no diálogo Timeu, de Platão. Para tanto, conta com a ajuda de dois amigos, um marceneiro e outro compositor, que, ao trabalharem juntos na peça, acabam fascinados pelos sólidos de Platão.

Conteúdos

  • Simetria
  • sólidos de Platão

Objetivos

  1. Introduzir a idéia matemática de simetria

Mariana, através da internet, ao desejar feliz aniversário para a sua avó conversa sobre o trabalho dela durante a 2ª guerra mundial, que envolve mensagens, códigos, criptografia e muitas curiosidades sobre máquinas que criavam e decodificavam cifras e os primeiros computadores.

Conteúdos

  • criptografia.

Objetivos

  1. Mostrar a importância da criptografia na evolução da história e da tecnologia;
  2. Apresentar tipos de máquinas e artefatos que possibilitam a criação de cifras e a decodificação das mesmas;
  3. Introduzir conceitos de criptografia.

Um rei está entediado com suas atividades e o seu servo lhe sugere várias opções de entretenimento, mas o rei não se interessa. Aí o servo chama o sábio do reino. O sábio traz consigo um jogo, que é o antecessor do jogo do xadrêz e ensina o rei a jogá-lo. Eles jogam muitas partidas e o rei quer agradecer ao sábio por esta diversão tão boa. O sábio pede sementes ao rei de acordo com uma lei matemática.

Conteúdos

  • Função Exponencial.
  • Progressão Geométrica
  • Xadrez
  • Lenda

Objetivos

  1. Apresentar sequências numéricas;
  2. Introduzir progressões geométricas, seu termo geral e a soma dos seus termos;
  3. Apresentar a função exponencial.

O Marcelo descobre a probabilidade de passar em uma prova de múltiplas alternativas se ele simplesmente responder de maneira aleatória. Ao longo do vídeo uma informação importante sobre números não tão aleatórios e o cálculo das probabilidades de eventos equiprováveis são apresentados.

Conteúdos

  • Probabilidade
  • probabilidade condicional
  • equiprobabilidade

Objetivos

  1. Introduzir o assunto de equiprobabilidade
  2. Aplicar conceitos de probabilidade condicional

O motoboy Romário necessita entregar uma encomenda em duas horas. Com a ajuda da sua amiga Grasi e através de conceitos combinatórios, aprende quais os melhores caminhos possíveis a serem feitos.

Conteúdos

  • Combinatória
  • métrica do taxista
  • permutação com repetição

Objetivos

  1. Introduzir a métrica do taxista através de um exemplo cotidiano;
  2. Aplicar o conceito de permutação com repetição;
  3. Mostrar algumas identidades combinatórias.

O pai de Tonho procura encher 90 saquinhos com a mesma quantidade de café, mas um deles acaba ficando com menos café que os demais, e deixa um aviso. Mas Tonho e Karen não viram o aviso a tempo e agora terão que descobrir qual é o saquinho mais leve. Qual o menor número de pesagens necessário para isso?

Conteúdos

  • Aplicação de logaritmos;
  • Contagem
  • potência

Objetivos

  1. Mostrar uma aplicação de logarítmicos.

Mário está em apuros para pagar uma dívida assumida com o Luigi. Entre sonhos e pesadelos, ele encara um desafio. Para tomar a melhor decisão, algumas considerações sobre valor esperado ou esperança em probabilidade são abordadas. O final provavelmente é bom.

Conteúdos

  • valor esperado
  • esperança
  • Probabilidde

Objetivos

  1. Apresentar uma aplicação do valor esperado ou esperança, da probabilidade.

O programa faz uso dos personagens Pablo e Arquimedes para abordar inicialmente o resultado de Arquimedes de que a área de um círculo é equivalente à área de um triângulo retângulo que tem por base o perímetro deste círculo e por altura seu raio. São também comentados o problema clássico da quadratura do círculo e a expressão da área do círculo como a multiplicação de um número pi vezes seu raio ao quadrado.

Conteúdos

  • número pi
  • Área de um círculo

Objetivos

  1. Apresentar o problema do cálculo da área de um círculo e conexões com outros resultados de geometria plana;
  2. Apresentar e motivar a busca por aspectos históricos, em particular deduções da geometria grega e trabalhos de Arquimedes, que foram fundamentais no desenvolvimento da matemática.

O Salvador é um hipocondríaco que lê a bula do remédio que vai tomar para alguma dor e depara com algumas informações curiosas do ponto de vista matemático. Com a ajuda de seu anjo da guarda, ele entende o significado dos termos da bula e aprende algumas lições.

Conteúdos

  • Função Exponencial.
  • meia-vida
  • concentração de remédios
  • decaimento radioativo

Objetivos

  1. Apresentar uma aplicação prática de uma função exponencial decrescente;
  2. Oferecer noções de absorção e eliminação de remédios.

Uma conhecida universidade aparentemente favorece os homens em seu processo de admissão. Será que isto é o que de fato está acontecendo?

Conteúdos

  • Estatística
  • amostragem
  • correlações
  • Paradoxo de Simpson

Objetivos

  1. Discutir análise de dados discretos;
  2. Apresentar o paradoxo de Simpson.

Um jovem estudante, que é presidente do centro acadêmico, está preparando uma gincana para os calouros. Pede ajuda ao seu irmão que sugere prêmios aos calouros que resolverem o “problema dos armários”. Acontece que o irmão do jovem desaparece e ele não sabe resolver o problema que propôs aos calouros. Fala com um amigo, que faz Matemática, para ajudá-lo. O amigo o ajuda a resolver o problema de uma maneira bem fácil.

Conteúdos

  • divisibilidade
  • quadrados perfeitos
  • múltiplos

Objetivos

  1. Provar que um número inteiro é um quadrado perfeito, se e somente se tem um número impar de divisores;
  2. Estudar o teorema Fundamental da Aritmética;
  3. Obter uma fórmula para a quantidade de divisores de um número natural.

Um jovem documentarista solicita informações a respeito de abalos sísmicos a um geólogo. No desenrolar da conversa, o rapaz acaba aprendendo como se mede a magnitude dos tremores e qual é a escala usual adotada para tal medição.

Conteúdos

  • Logaritmo
  • escala Richter
  • terremoto

Objetivos

  1. Mostrar algumas propriedades de logaritmos;
  2. Apresentar a escala logartímica apropriada para medir intensidades relativas de terremotos.

12345678 


licença Esta obra está licenciada sob uma licença Creative Commons 
Site desenhado e construído pela Preface Design.